您好!欢迎光临工博士商城

ABB机器人配件代理商

产品:65    
联系我们
您当前的位置:首页 » 新闻中心 » 「机器学习」在单晶硅切割工艺中的应用
产品分类
新闻中心
「机器学习」在单晶硅切割工艺中的应用
发布时间:2019-08-13        浏览次数:115        返回列表
 颠覆性创新技术不但是投资者追逐的风口,更是实业者努力创造的现实。走过130年创新路,ABB继续在数字化浪潮中御风而行,通过自有实验室实现了众多技术突破,同时携手新兴科技领域全球翘楚,致力于开放式创新。
 
今天,人工智能已然成为智能制造、工业互联网大潮中的热门话题,人们赋予了人工智能非常多的期望。然而,人工智能必须要与人的经验结合才能*大程度发挥效能,工业领域的人工智能更是如此。工业生产往往由机械-电气-工艺构成复杂系统,变量多、系统机理复杂相互影响。因此,如何将人工智能的算法与模型和工业现场的应用场景相结合,这个需求本身就是一项创新。如何通过简单方法解决现实问题也是评估创新性的关键一环。机器学习作为人工智能*为重要的内容之一,是解决工业问题的有效方法。
 
单晶硅电池在长晶、切方后会进入切片工序。在这个工序里:放线轮的钢丝线会经过四个轴绕线(超过3000圈)然后被牵出,经过切方的晶棒会被放于其上;随后,通过在钢丝线上加载石英砂研磨材料将晶棒切为单片的晶片,然后通过后道的清洗、制绒、刻蚀、减反射膜(PECVD)等工序,并经过层压敷设等组装工序成为光伏组件,提供电力供应能力。
 
多线切割机是生产晶硅电池*为重要的设备,每天都处于连续工作状态,属于负荷非常重的生产设备,它的稳定性及可靠性会直接影响到工厂的产能和产品质量。众所周知,单晶硅棒材价格昂贵,因此如何提高多线切割机的健康预测至关重要。在生产切割过程中,若因为机器故障导致切割出废品,那么硅棒损耗、停机及人工成本带来的损失将非常高。
 
青岛高测科技股份有限公司(以下简称高测)是国内**的光伏设备制造商,在过去数年里发展迅速,装机量大幅提升。为了更好地提升用户体验与服务效率,高测在原有基于状态监测的维护之上开发了基于机器学习的预测性维护模型。
 
预测性维护挑战重重
 
预测性维护并非是一种全新的设备维护解决方法,在过去的数十年里,它已经被应用于航空发动机、大型鼓风机等诸多领域。
 
由于采用专用的分析模型,这些预测性维护往往需要对机械失效模型进行深入的研究,而且通常需要配备非常专业的维护人员。维护航空发动机这样的重值设备,尚可以承受高昂的维护价格;但对工业装备而言,这个方法往往经济性不足,并且航空发动机领域的相关知识不易于移植到其它行业,每个垂直的领域都有非常特殊的工况以及系统运行机制。
 
「数字驱动」为设备提供稳定保障
 
数字驱动的机器学习的不断发展,让不依赖于机器固有复杂建模基础上的预测性维护成为可能,通过数据分析对潜在风险进行评估和预测,为设备提供稳定可靠的保障。
高测多线切割系统采用贝加莱的Panel PC作为控制系统。Panel PC是一款集成控制系统,可以将PC的强大计算能力、PLC实时控制能力和Windows丰富的HMI开发能力融为一体。因为具有开放的算法支持能力,该系统仅需在现有硬件和软件平台基础上进行机器学习算法设计,而无需额外配置一套专用的机器学习系统或其它类似AI加速器等硬件。原系统本身就提供了对牵引轴的温度点检测,四个驱动轴分别配有温度检测模块提供采样输入。
 
未来工业应用场景分析
 
预测性维护
通过数据(温度,流量,电流,加速度等)监测过程并预测其预期行为的区域,以检测设备故障或生产错误。在传统应用中,我们使用固定阈值,并在物理值超过阈值时生成警报,这种方法需要非常专业的机械模型和失效分析,并对人员专业度要求极高。而通过数据驱动的机器学习方法,可以通过大量的数据采集和学习来实现对故障的预测,在对机器造成不可逆转损坏或重大生产损失之前更好地识别潜在故障。实际应用可以是非常通用的:从注塑机到风力发电机组到过程自动化。
了解相关资讯请点击:ABB机器人配件
本文摘自:网络   日期:2019-08-13



 

联系热线:156 0178 5639   联系人:黄淑珍 联系地址:上海市宝山区富联一路98弄6号

技术和报价服务:星期一至星期六8:00-22:00 ABB机器人配件代理商